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Selected Topics in Higgs and Supersymmetry

Introduction
• Motivation for SUSY at the TeV Scale
• Some SUSY scenarios and signatures

The role of the Tevatron in shaping the next decade
• Precision Measurements
• Discovery of new particles or new bosonic or fermionic (SUSY) dimensions
• Indirect SUSY signatures

The MSSM Higgs Boson Phenomenology
• Radiative corrections to masses and couplings
• Benchmark scenarios and Higgs opportunities at the LHC

Effects of explicit CP violation in the Higgs Sector
• How can this affect Higgs searches at Colliders

Outlook
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Introduction

• Standard Model =⇒ the pillar of particle physics that explains data collected in the past

several years and provides description of physical processes up to energies of ≈ 100 GeV.

However, it is only an effective theory.

• Many open questions

? origin of EWSB

? generation of stabilization of hierarchies: Mweak Vs MPlanck

? connection of electroweak and strong interactions with gravity

? generation of fermion masses and mixings

? explanation of baryon asymmetry of the universe

? dark matter and dark energy

=⇒ crucial to get the complete picture valid up to higher energies, MPl

• Collider Experiments: Tevatron LHC, a Lepton Collider (TeV reach)

our most robust handle to reveal the new physics that should answer these questions

in this and the next decade
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EWSB occurs at the TeV scale

In the absence of big fine-tuning of scales,

=⇒ New Phenomena should lie in the TeV range or below, within reach of LHC/LC

Numerous theories have been proposed:
two broad classes:

weakly coupled dynamics

strongly coupled dynamics

• Standard Model → example of weak EWSB

one extra physical state left in the spectrum ≡ HIGGS Boson

Present Data → no direct evidence of Higgs [mh > 114.4 GeV (LEP2)]

SM with weakly coupled Higgs is in excellent agreement with precision data =⇒
mHSM

≤ 210 GeV at 95 % C.L.

• In weakly coupled approach, SM most probably embedded in SUSY theory
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• SUSY must be broken in the ground state – SUSY partners heavier than SM particles

If SUSY exists, many of its most important motivations demand some SUSY

particles at the TeV range or below

? Solve hierarchy/naturalness problem
In low-energy SUSY: quadratic sensitivity to Λeff is replaced by

quadratic sensitivity to SUSY breaking scale

? EWSB is radiatively generated

In the evolution of masses from high energy scales

−→ a negative Higgs mass parameter is induced

via radiative corrections

=⇒ important top quark Yukawa effects!
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SUSY breaking scale must be at or below 1 TeV
if SUSY is associated with EWSB scale !
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? Play central role in unification of gauge couplings
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Unification at αGUT ' 0.04 and MGUT ' 1016 GeV

Experimentally, α3(MZ) ' 0.119± 0.003

in the MSSM:

α3(MZ) = 0.127− 4(sin2 θW − 0.2315)± 0.008

Remarkable agreement between Theory and Experiment!!

Langacker, Polonski Bardeen, M.C., Pokorski, Wagner

? Large value of mt can be understood as resulting from quasi infrared
fixed point of top-Higgs Yukawa coupling.
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−→ varying ht(mt) prediction

tan β = v2/v1; mt = htv2

mpole
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4αs(mt)
3π

]
sin β

∼ (185 GeV)ht(mt) sin β

Bardeen, M.C., Pokorski, Wagner
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? Provides a good dark matter candidate −→

Present WMAP satellite data has confirmed with great accuracy the cold-dark matter

density of the universe: 0.094 ≤ ΩCDMh2 ≤ 0.13

→ SUSY dark matter candidate is likely to be the lightest neutralino with mass

possibly below 500 GeV and almost degenerate with the stau
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Ellis, Olive, Santoso, Spanos
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? Provides a possible solution to the observed baryon asymmetry
Baryogenesis at the electroweak phase transition: (Start with B=L=0)

? CP violating sources =⇒ create chiral baryon-antibaryon asymmetry in the symm. phase

? Net Baryon number diffuse in the broken phase

? Strong first order phase transition =⇒ baryon number violating processes are out of

equilibrium in the broken phase =⇒ preserve the generated baryon asymmetry

In the SM:

• EW Baryogenesis demands a Higgs mass below 40 GeV =⇒ ruled out by experiment

• Independent problem: not enough CP violation

In Supersymmetry: both problems can be solved

• New bosonic degrees of freedom with coupling of order one to the Higgs

=⇒ sufficiently strong first order phase transition with a Higgs mass up to 120 GeV

• New sources of CP violation from the sfermion sector
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M.C., Quiros, Seco, Wagner
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The mechanism of SUSY breaking is not well understood.

⇓

Different SUSY breaking scenarios −→ crucially different patterns of
low energy spectrum –production and decays–

Important to develop a comprehensive search strategy to explore

the main signals in different SUSY breaking scenarios.

SUGRA Scenarios
• Strongly interacting particles (due to RG effects) tend to be heavier

than weakly interacting ones.

Supersymmetric particles odd under R-parity: Rp = (−1)3B+L+2S

• If R-parity Conserved: Lightest Supersymmetric Particle (LSP) Stable

=⇒ lots of E/T→ distinctive SUSY signature

• LSP Stable =⇒ good Dark Matter candidate: neutralinos
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Extensions of MSUGRA: CP Violation

• Soft SUSY breaking parameters MAY BE COMPLEX and take any value allowed

by phenomenological constraints

At least two complex phases cannot be rotated away, choosing those as φµ and φA

=⇒ six param. determine the sparticle spectrum:

m0, M1/2, A0, tan β, φµ, φA

• Interesting constraints on SUSY param. space from EDM’s of electron and u,d quarks(
df

e

)1l.

∼ 10−25cm
(Imµ, ImAf )

max.(mf̃ , mλ)

(
1TeV

max.(mf̃ , mλ)

)2(
mf

10MeV

)
To resolve the one-loop CP crisis:

• Imµ/|µ|, ImAf /Af ≤ 10−2, with (mf̃ , mλ)∼ 200GeV

• CP phases ∼ 1, but mf̃ > 1 TeV for f̃ = ẽ, ũ, d̃, ν̃L

• Cancellations between different EDM terms

⇓

• Two-loop contributions to EDM’s =⇒ constraints on CPV parameters of 3rd. gen.

squarks, specially for large tan β −→ important for Higgs physics

CPV makes more challenging to reconstruct SUSY masses and couplings from

experimental data
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Gauge-Mediated Low-energy SUSY Breaking Scenarios

• Special feature −→ LSP: light (gravitino) Goldstino: mG̃ ∼ 10−6 − 10−9GeV

If R-parity conserved, heavy particles cascade to lighter ones and

NLSP −→ SM partner + G̃ e.g., χ̃0
1 → (h, Z, γ) G̃; ˜̀± → `± G̃; q̃ → q G̃

Superpartner masses proportional to their gauge couplings.

• Signatures: decay length L ∼ 10−2cm
( m

G̃

10−9GeV

)2
×
(

100GeV
MNLSP

)5
? NLSP can have prompt decays:

Signature of SUSY pair: 2 hard photons, (H’s, Z’s) + E/T from G̃

? macroscopic decay length but within the detector:

displaced photons; high ionizing track with a kink to a minimum ionizing track

(smoking gun of low energy SUSY)

? decay well outside the detector: E/T like SUGRA

Anomaly-Mediated SUSY Breaking Scenarios

• SUSY breaking masses determined by beta functions, proportional to gauge couplings

• Striking signature at colliders: χ̃±1 → χ̃0
1π±

at tree level, M
χ̃
±
1
≈ M

χ̃0
1

– mass degeneracy lifted by radiative corrections

by about 150 MeV −→ very soft pion (decay length of order 1 cm)
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Indirect Information on SUSY from Experiment

• Higgs mass constraints from LEP

=⇒ impose important constraints on SUSY breaking models & 3rd gen. squark masses

Model independent bounds on tan β
as a function of the heaviest stop mass

for different values of the

stop mass splitting

∆Mt̃ = mt̃2
−mt̃1

,

for mh = 115 GeV,

large MA, Mt = 175 GeV

M.C., Chankowski, Pokorski & Wagner

Selected Topics in Higgs and Supersymmetry
Marcela Carena, Fermilab



What Can We Learn from RUN 2?

Precision measurements:

• top quark mass: δMt ' 3 GeV with 2 fb−1

• W mass: δMW ' 30 MeV with 2 fb−1

high precision for Mt is important to

=⇒ exploit precision on MW in the context of electroweak precision measurements

Mt–MW –MH Correlation

• direct Mt and MW measurements

from LEP and the Tevatron

• Indirect Mt and MW determination

from SM fit to precision data

(LEP, SLD, νN)

• SM relationship for Mt–MW –MH

=⇒ crucial information on MH

=⇒
A light SM Higgs Boson

strongly favored by data 160 165 170 175 180 185 190
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Stop and Sbottom Searches

In many models (MSUGRA, extended Gauge– and Anomaly–Mediated)

−→ t̃’s and b̃’s quite light

• If mt̃1
> m

χ̃±1
+ mb or > MW + mχ̃0

1
+ mb

or > ml + mν̃ + mb or > ml̃ + mν + mb

=⇒ t̃1 → bχ̃
±(∗)
1 → bχ̃0

1ff̄ ′ with ff̄ ′ = lν̄ or qq̄′

Signals: 2b jets + 2 W’s + E/T , 2b jets + 2l’s +E/T

Selection: b-jet + jet + l + E/T , 2l’s + jet + E/T

Demina, Lykken, Matchev & Nomerotski

LEP χ+ limit

ECM=2.0 TeV

L=20 fb-1

L=4 fb-1

L=2 fb-1

M
(t

∼ 1
)=

M
(b

)+
M

(χ
∼ 1+ )

t
∼
1 → b + χ

∼
1
+

ECM=2.0 TeV

L=20 fb-1

L=4 fb-1

L=2 fb-1M
(t∼ 1

)=
M

(b
)+

M
(l)

+M
(ν

∼ )

LEP ν
∼
 limit

t
∼
1 → b l ν

∼
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• If above modes kinematically disallowed,

t̃1 → cχ̃0
1 (via bχ̃±1 loop)

Signal/Selection: 2c jets + E/T

LEP χ0
1 limit

ECM=2.0 TeV

L=20 fb-1

L=4 fb-1

L=2 fb-1

M
(t∼ 1

)=
M

(c
)+

M
(χ

∼ 10 )

M
(t∼ 1

)=
M

(b
)+

M
(W

)+
M

(χ
∼ 10 )

M
(t∼ 1

)=
M

(t)
+M

(χ
∼ 10 )

t
∼
1 → c + χ

∼
1
0 or t

∼
1 → b W χ

∼
1
0

• Sbottoms:

=⇒ b̃1 → bχ̃0
1

100% BR if mχ̃0
2

> mb̃ −mb

LEP χ0
1
limit

ECM
� =2.0 TeV

L=20 fb-1

L=4 fb-1

L=2 fb-1M
(b

∼ 1
)=

M
(b

)+
M

(χ
∼ 10 )

b
∼

1 →
b
+ χ
∼

1
0

if b̃ → bχ̃0
2 allowed,

limit degraded in 30-40 GeV

In summary: with
∫
Ldt = 4 fb−1

mt̃1
≤ 200/210 GeV in t̃1 → bχ̃±1 /t̃1 → blν̃

mt̃1
≤ 180 GeV in t̃1 → cχ̃0

1

mb̃1
≤ 230 GeV in b̃1 → bχ̃0

1
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Stop Searches in Low Energy SUSY Breaking Models

Considering the stops to be the NLSP, look for signatures with jets, γ’s and E/T (small

SM backgds.) M.C, Choudhury, Diaz, Logan, Wagner
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jjγγE/T∫
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G
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1

dominates

Cross sections for stop pair production in

fb, with t̃ → bWγG̃ and Signal/selection

bbWWγγE/T∫
L σS Max. mt̃ (3 body)

2 fb−1 2.5 fb 315 GeV

4 fb−1 1.3 fb 330 GeV

? q̃ → qγG̃ =⇒ squark mass reach up to 400 GeV
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An Interesting Highlight −→ Electroweak Baryogenesis

predicts light right-handed stops mt̃R
∼ 150 GeV

and MSSM Higgs bosons in the range mh ∼ 100-118 GeV

100 105 110 115 120

mH (GeV)

100

120

140

160

m
st

R
 (G

eV
)
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M.C., Quiros & Wagner

Tevatron Run II reach for Higgs and stops probes Baryogenesis at the Electroweak scale!
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Gauge-Mediated Tevatron Reach

Bino-like NLSP: χ̃0
1→γG̃

Signal: γγXE/T

X = `’s and/or jets
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∼ 260 GeV (discovery)

Higgsino-like NLSP: χ̃0
1 → (h, Z, γ)G̃

Signal: γ b E/T X

diboson signatures (Z → ``/jj; h → bb̄)E/T
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sensitivity up to 200 GeV for 2 fb−1
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• Non-prompt Decays

• Few 100 TeV ≤
√

F ≤ few 1000 TeV

Bino-like NLSP

Photon Pointing: it is possible to identify

a displaced photon from a secondary vertex

and possibly det. decay length using TOF

Meas. of decay length → meas. of SUSY

breaking scale

C
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=⇒ displaced γ’s or secondary vertices from bb̄, jj, `+`−

Search for displaced Z’s using large ET displaced jet with finite impact parameter or

diplaced l’s should be explored.

• If
√

F ≥ few 1000 TeV =⇒ outside detector decay looks like traditional χ̃0
1 LSP
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Stau NLSP:

• prompt decays

2 high-pT τ ’s and high E/T

mass sensitivity for 2 fb−1

mτ̃ < 80 GeV (5σ) DØ

mτ̃ ∼ 100 GeV (95% CL) CDF

• quasi-stable τ ’s

highly-ionizing tracks, extra µ-like tracks

for 2 fb−1,

CDF =⇒ mτ̃ > 150 GeV excl.

∼ 110 GeV disc.
(40 GeV improvement with ToF)

DØ =⇒ ∼ 175 GeV disc.
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Bs → µ+µ− as a probe of tan β at the Tevatron

SM sample diagram:

SM amplitude ∝ Vts
mµ

MW

Br(B → µ+µ−)SM = (3.8± 1.0)× 10−9

�

���������

�

	


 �

� �

In the MSSM, with two Higgs doublets, the Higgs Mediated contribution can put

this BR at the reach of the Tevatron!
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After SUSY breakdown, new contributions to d-type

quark masses are generated even in a Minimal Flavor

Model (CKM-induced)

Br(B → µ+µ−)MSSM ∝ tan6 β 1
M2

A0
f(µAt, Mt̃i

, M
χ̃+

i

)

where f → const. 6= 0 for MSUSY →∞.

Babu, Kolda

⇒ branching fraction can be enhanced by three orders of magnitude!
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Contours of Maximun allowed value of
BR(Bs → µµ) as a function of MA and tan β.
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• Br(Bs → µ+µ−) < 2.6 · 10−6 from Run 1.

• Single event sensitivity at Run 2

is 10−8 for 2 fb−1

Kane, Kolda, Lennon

If a signature is observed at the Tevatron =⇒ lower bound on the value of tan β

tan β > 11

(
MA

100GeV

)2/3
[

Br(Bs → µ+µ−)

10−7

]1/6

Interesting to study direct reach in MA via bb̄ A/H production for large tan β and

reach in Br(Bs → µ+µ−) for different sets of MSSM paraneters
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MSSM Higgs sector at Tree-Level

H1, H2 doublets =⇒ 2 CP-even Higgs h, H 1 CP-odd state A 2 charged Higgs H±

Higgs masses and couplings given in terms of two parameters:

mA and tan β ≡ v2/v1 mixing angle α =⇒ cos2(β − α) =
m2

h
(m2

Z−m2
h
)

m2
A

(m2
H
−m2

h
)

Couplings to gauge bosons and fermions (norm. to SM)

hZZ, hWW, ZHA, WH±H −→ sin(β − α)

HZZ, HWW, ZhA, WH±h −→ cos(β − α)

(h,H,A) uū −→ cos α/ sin β, sin α/ sin β, 1/ tan β

(h,H,A) dd̄/l+l− −→ − sin α/ cos β, cos α/ cos β, tan β

If mA � MZ → decoupling limit

• cos(β − α) = 0 up to correc. O(m2
Z/m2

A)

• lightest Higgs has SM-like couplings and mass m2
h ' m2

Z cos2 2β

• other Higgs bosons: heavy and roughly degenerate

mA ' mH ' m±
H up to correc. O(m2

Z/m2
A)
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Radiative Corrections to Higgs Masses

important quantum correc. due to loops of particles and their superpartners:

incomplete cancellation due to SUSY breaking =⇒ main effects: top and stop loops;

bottom and sbottom loops in large tan β regime

The stop mass matrix:(
M2

Q + m2
t + DL mtXt

mtXt M2
U + m2

t + DR

)
DL ≡ ( 1

2
− 2

3
sin2 θW )M2

z cos 2β and

DR ≡ 2
3

sin2 θW M2
z cos 2β

m2
h = M2

Z cos2 2β +
2 g2

2 m4
t

8π2 M2
W

[
ln(M2

S/m2
t ) +

X2
t

M2
S

(
1−

X2
t

12 M2
S

)]
+ h.o.

M2
S = 1

2
(m2

t̃1
+ m2

t̃2
) and Xt = At − µ/ tan β −→ stop mixing

• two-loop log. and non-log.effects are numerically important → computed by

different methods:

diagrammatic effective potential RG-improved effective potential

• upper limit on Higgs mass:

mh <∼ 135 GeV
MS = 1 → 2 TeV =⇒ ∆ mh ' 2− 5 GeV

∆ mt = 1 GeV =⇒ ∆ mh ∼ 1 GeV

Selected Topics in Higgs and Supersymmetry
Marcela Carena, Fermilab



main effects already present in one-loop formulae

• m4
t enhancement

• logarithmic sensitivity to mt̃i

• depend. on t̃-mixing Xt

=⇒ max. value Xt ∼
√

6MS

(scheme depend.) small asym. at h.o.

M.C. & Haber

MSUSY ≡ MQ = MU = MD if MSUSY � mt → M2
S ' M2

SUSY

• at 2 loops → Mg̃ dependence
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MSSM Higgs Masses as a function of MA

m2
H cos2(β − α) + m2

h sin2(β − α) = [mmax
h (tan β)]2

• cos2(β − α) → 1 for large tan β, low mA

=⇒ H has SM-like couplings to W,Z

• sin2(β − α) → 1 for large mA

=⇒ h has SM-like couplings to W,Z

Hence, for large tan β:

→ always one CP-even Higgs with SM-like couplings to W,Z

and mass below mmax
h ≤ 135 GeV

if mA > mmax
h → mh ' mmax

h and mH ' mA

if mA < mmax
h → mh ' mA and mH ' mmax

h
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Radiative Corrections to Higgs Boson Couplings

1 Through rad. correc. to the CP-even Higgs mass matrix, δM2
ij , which defines the

mixing angle α

sin α cos α = M2
12 /
√

(TrM2)2 − 4 detM2

important effects of rad. correc. on sin α or cos α depending on sign of µ At and

magnitude of At/MS .

=⇒ govern couplings of Higgs to fermions

=⇒ via rad. correc. to cos(β − α) and sin(β − α) governs Higgs couplings to vector bosons

2 SUSY vertex correc. to Yukawa couplings, which modify the effective Lagrangian,

coupling Higgs to fermions

Leff −→ hb H0
1 bb̄ + ∆hb H0

2 bb̄
���� ����

����

�
	 �
�

��∆hb modifies the mb–hb relation

mb ' hbv1 + ∆hbv2 = hb v cos β

(
1 +

∆hb

hb
tan β

)
∆b =

∆hb

hb
tan β ∼

2αS

3π

µ Mg̃

max(m2
b̃1

, m2
b̃2

, M2
g̃ )

tan β + ∆t̃χ̃+

b

∆b ∼ O(1) if tan β large ∆t̃χ̃+

b
∼

h2
t

16π2
µ At

max(m2
t̃1

,m2
t̃2

,µ2)
tan β

Selected Topics in Higgs and Supersymmetry
Marcela Carena, Fermilab



Modified Higgs Boson Couplings to b-quarks

gh bb̄ '
− sin α mb

v cos β(1+∆b)
(1−∆b/ tan α tan β)

gH bb̄ '
cos α mb

v cos β(1+∆b)
(1−∆b tan α/ tan β)

gA bb̄ '
mb

v(1+∆b)
tan β

• similar effects on τ coupling but |∆τ | � |∆b|

Important modifications of couplings occur for regions of MSSM parameter space

−→ dep. on sign and values of µAt, µAb, µMg̃ and magnitudes of Mg̃/MS , µ/MS

• destroy the basic relation: gh bb̄/gh ττ ∼ mb/mτ

• strong suppression of coupling of h (H) to bottoms if

tan α ' ∆b/ tan β ((tan α)−1 ' −∆b/ tan β)

gh bb̄ ' 0 ; gh ττ ' −mτ
v

∆b (h ↔ H)

=⇒ main decay modes of SM-like MSSM Higgs: bb̄ ∼ 80% τ+τ− ∼ 7− 8%

drastically changed =⇒ other decay modes enhanced

=⇒ Higgs phenomenology at colliders revisited!!
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More generally we can write the Effective Lagrangian:

− Leff = εij

[
(hb + δhb)b̄RHi

dQj
L + (ht + δht)t̄RQi

LHj
u

]
+∆ht t̄RQk

LHk∗
d + ∆hbb̄RQk

LHk∗
u + h.c.

The resulting interaction Lagrangian defining the couplings of the physical Higgs

bosons to third generation fermions:

Lint = −
∑

q=t,b,τ

[
ghqq̄hqq̄ + gHqq̄Hqq̄ − igAqq̄Aq̄γ5q

]
+
[
b̄gH−tb̄tH

− + h.c.
]

.

g(h/H/A),bb̄ as given before. Similarly, g(h/H/A),τ+τ− replacing mb → mτ , ∆b → ∆τ

and g(h/H/A),tt̄ replacing mb → mt, ∆b → ∆t, tan β, tan α → 1/ tan(β), 1/ tan(α)

(no tan β enhancement in ∆t; ∆τ � ∆b)

Similar to neutral Higgs case, for the charged Higgs one has important radiative

corrections for large tan β

gH−tb̄ '
{

mt

v
cot β

[
1−

1

1 + ∆t

∆ht

ht
tan β

]
PR +

mb

v
tan β

[
1

(1 + ∆b)

]
PL

}
also ∆mτ corrections in gH−τντ

may be included.

Selected Topics in Higgs and Supersymmetry
Marcela Carena, Fermilab



MSSM Higgs Boson Searches at Hadron Colliders

Due to large number of free parameters, a complete analysis of MSSM param. is

too involved

different initial states → production and decay channels relevant at lepton colliders

are different from hadron colliders

different enviroment at the Tevatron and LHC → different relevant Higgs

production and decay channels as well

Main Neutral Higgs Boson Production Processes

Tevatron:

vector-boson bremsstrahlung: pp̄→V h/V H→ V bb̄

associated production: pp̄ → φbb̄ → bb̄bb̄ with φ = A/h or A/H

LHC:

vector-boson fusion: qq → qqV ∗V ∗ → qqh, qqH, with h, H → V V, τ+τ−, γγ

gluon fusion: gg → φ → γγ

associated production gg, qq̄ → φtt̄ with subsequent decay φ → bb̄, γγ V V ∗
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Benchmark Scenarios for the Search of the
SM-like Neutral MSSM Higgs

SM-like → MSSM Neutral Higgs with stronger coupling to the W,Z bosons (also to

top for intermediate/large tan β)

for mA > mmax
h → h

for mA < mmax
h (and tan β ≥ 10) → H

and mh(H) ≤ mmax
h ≤ 135 GeV

Scenarios proposed: designed to study MSSM Higgs Sector

without any assumptions of a particular soft SUSY breaking scenario

taking into account only constraints from the Higgs sector itself

For each scenario:

Fix values of t̃, b̃ sectors and gaugino masses

Vary tan β and mA

0.5 ≥ tan β ≤ 50 and mA ≤ 1 TeV.

Present results in terms of
[σ ×BR]MSSM

[σ ×BR]SM

for various production channels
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The mmax
h Scenario

maximizes the value of the lightest Higgs mass & allows conservative tan β exclusion bounds

MSUSY = 1 TeV, Xt =
√

6 MSUSY , µ = M2= 200 GeV, Ab = At , Mg̃ = 0.8 MSUSY

LHC

h → γγ

Tevatron:

h → bb̄

• ghbb̄, ghττ enhanced due to sin αeff / cos β factor for low mA and intermediate/large

tan β =⇒ strong suppression of h → γγ

=⇒ gg → h → γγ strongly suppressed compared to SM

and W ∗/Z∗ → W/Zh → W/Zbb̄ nearly always enhanced

(WWh/ZZh coupling is SM-like for mA ≥ mmax
h )

For mA ≤ mmax
h , tan β ≥ 10 =⇒ W ∗/Z∗ → W/ZH → W/Zbb̄ similar behavior
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LHC Prospects for Neutral Higgs searches: the mmax
h scenario
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• vector-boson fusion with decay into taus

is the decisive channel with 30 fb−1

• h → γγ, from gluon fusion and

associated production with top quarks,

and h → bb̄ from associated production

with top quarks, need 100 fb−1
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The mmax
h scenario at LHC with 30 fb−1
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Small αeff Scenario

Besides gg → h → γγ, most channels at the Tevatron and LHC rely on h → bb̄, τ+τ−

If αeff (rad. corrected α) is small =⇒ ghbb̄ and ghττ couplings can be importantly

suppressed : Suppression occurs for moderate/large tan β and small/moderate mA

Also, h → bb̄ can have large corrections from b̃/g̃ and t̃/χ̃± loops (∆b)

MSUSY = 800 GeV, Xt = −1.2 TeV, µ = 2.5MSUSY, M2 = 500 GeV, Ab = At, Mg̃ = 500 GeV

Tevatron:

h → bb̄

LHC:

h → τ+τ−

M.C., Heinemeyer,

Wagner & Weiglein

• Significant suppression for tan β ≥ 20 and mA ≤ 200 (400) GeV for h → bb̄ (ττ)

=⇒ Searches via W/Zh, WWh and tt̄h will be more difficult than in the SM.

Instead, the h → γγ channel will be enhanced compared to the SM.
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LHC Prospects for Neutral Higgs searches: Small αeff scenario
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• Complementarity between the vector

boson fusion and the h → γγ channels

for 30 fb−1

• tt̄h → tt̄ bb̄ channel relevant only with

high luminosity
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The αeff scenario at LHC: tth with 30 fb−1, h→ γγ with 100 fb−1
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Charged Higgs searches at the Tevatron

• Curves of constant BR for t → bH+ after

resummation of LO and NLO logarithms of QCD
corrections included applying OPE

Shaded area excluded by Run1 DØ frequentist

analysis from H± searches in top decays
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M.C., Garcia, Nierste, Wagner

Drastic variations on tan β –mH±

plane bounds, depending

on MSSM parameter space
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Similar analysis for pp→ H+tb + X at LHC for large tan β
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5σ discovery
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Discovery reach at the LHC

for different sets of SUSY parameters,

which can enhance or suppress the

H±tb coupling

Discovery reach at LHC with 300 fb−1 and tan β > 30

• best case scenario: mH+ ≤ 1 TeV

• worst case scenario: mH+ ≤ 450 GeV

Belyaev, Garcia, Gausch, Sola
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CP violation in the Higgs Sector

• at tree level =⇒ MSSM Higgs potential invariant under CP

• After radiative corrections: CP violation induced through loop effects

via 3. generation sfermion and gaugino mass parameters

Many possible relevant phases to Higgs sector
mg̃ ( one phase if Univ. gaugino masses) Af µ and m2

12

Due to U(1) symm.of the conformal inv. sector:
→ one can redefine fields and absorb two phases

rephasing inv. combinations

if Im ((m2
12)∗Af µ) 6= 0 and/or Im ((m2

12)∗mg̃µ) 6= 0

=⇒ CP violating effects will be present in the MSSM

in practice, take m2
12 and µ real and leave phases in Af and mg̃
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Higgs Potential → Quantum Corrections

Minimization should be performed with respect to real and imaginary parts of Higgs

fluctuations H0
1 = φ1 + iA1 H0

2 = φ2 + iA2

Performing a rotation: A1, A2 =⇒ A, G0 (Goldstone)

Main Effect of CP-Violation is the mixing

between the three neutral Higgs boson states

 A

Φ1

Φ2

 = O

 H1

H2

H3


In the base (A, φ1, φ2):

M2
N =

[
m2

A

(
M2

SP

)T

M2
SP M2

SS

]
where M2

SP ∝ Im(µAt)

M2
SS is similar to the mass matrix in

the CP conserving case, and

M2
A is the mass of the would-be CP-odd Higgs.

m2
A no longer a physical parameter, but the charged Higgs mass MH± can be used as

a physical parameter, together with MS , |µ|, |At|, arg(At) and arg(Mg̃)
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Interaction Lagrangian of W , Z vector bosons

with mixtures of CP-even & CP-odd Higgs bosons.

⇓

gHiV V = cos βO1i + sin βO2i (V = W, Z)

gHiHjZ = O3i (cos βO2j − sin βO1j)−
O3j (cos βO2i − sin βO1i)

gHiH−W+ = cos βO2i − sin βO1i + iO3i

Oij −→ analogous to sin(β − α) & cos(β − α)

−→ all couplings as a fc. of two: gHkV V = εijk gHiHjV

and sum rules:
∑3

i=1
g2

HiZZ = 1
∑3

i=1
g2

HiZZ m2
Hi

= m2,max
H1

<∼ 135 GeV

(equiv. to CP-conserv. case)

upper bound remains the same

Decoupling limit: mH+ � MZ

• effective mixing between the lightest Higgs H1 and the heavy ones is zero: H1 −→ SM-like

• Due to high degeneracy between the would-be mA & mH

−→

(
m2

A ∆

∆ ∆′ + m2
A

)
w/ ∆ ∼ O(∆′) � m2

A

−→ mixing still relevant

Selected Topics in Higgs and Supersymmetry
Marcela Carena, Fermilab



Yukawa Couplings

−Lφbb̄ =
(
hbH

0
1 + ∆hbH

0
2

)
b̄LbR + h.c.

Coupling ∆hb generated by SUSY breaking effects ∆hb ' α3
3π

M∗
g̃ µ∗

M2
S

The one loop corrections to the Yukawa couplings introduce CP-violating

effects which are independent of Higgs mixing (like ε and ε
′
)

gS
Hidd = 1

hd cos β+∆hd sin β

[
Re(hd)O1i +Re(∆hd)O2i +

(
Im(hd) sin β−Im(∆hd) cos β

)
O3i

]
gP

Hidd = 1
hd cos β+∆hd sin β

[
Im(hd)O1i +Im(∆hd)O2i +

(
Re(hd) cos β−Re(∆hd) sin β

)
O3i

]
where we have defined the phase of the superfield bR

m2
b ∝ hb + δhb + ∆hb tan β

to be real and positive
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CP-Violating Higgs Bosons in the light of LEP2

Production Mechanism: e+e− → HiZ and e+e− → HiHj

CPX Scenario:
MSUSY = 0.5, 1 TeV

µ = 4 MSUSY

mg̃ = 1 TeV

|At| = |Ab| = 2MSUSY

• interesting example:

arg(At,b) = 90o, arg(mg̃) = 90o

mH± ' 150 GeV

−→ mH1 ' 70 GeV

mH2 ' 105 GeV

•MH1 very small but gh1ZZ → 0,

•MH1 + MH2 too heavy for the

given value of the gH1H2Z coupling

• MH2 just at the edge of LEP reach
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Other cases may require extra studies:
e.g. if H1H2 kinematically allowed and H2 → H1H1

open, then present LEP bounds may be challenged.{
OPAL preliminary
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a)MH2 ≤ 130 GeV =⇒ major role of

CP-violating effects.{
b)tan β <2.8 excluded

c)region of MH1 ≤ 50 GeV −→ open channels:

ZH2 and H1H2 with H2 → H1H1 → bb̄bb̄

(broaden signal with reduced sensitivity)

example: mH1 = 39 GeV, mH2 = 105 GeV

tan β = 8.5 not excluded

• Due to reduced couplings of Hi to W/Z gauge bosons
and to extended regions where H2 → H1H1 dominates

No limit on lightest Higgs can be given independent of tan β

(May change after combination of 4 experiments)

• Can Such decay chain be seen at the Tevatron? gg → H2 → H1H1 ?
Some studies at parton level. . . also for LHC
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Approximate LEP exclusion and Tevatron (3σ / 5 fb−1) and LHC (5σ discovery) limits

in the mH1 − tan β plane for CPX scenarios with different phases (arg Mg̃) = arg(At,b)
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45◦ lines → Tevatron: W/Z Hi(→ bb̄)

135◦ lines → LHC: gg → Hi → γγb (100 fb−1)

tt̄ Hi(→ bb̄) (100 fb−1)

WW/ZZ Hi(→ τ+τ−) (30 fb−1)

grey → LEP exclusion.

M.C., Ellis, Pilaftsis, Wagner

• low tan β and low mHi
region remains uncovered in the absence of the H2 → H1H1 analysis

• Encourage the study of gg → H2 → H1H1 and tt̄H2 and W/Z H2

with subsequent decay H2 → H1H1 using the extra leptons from the W/Z’s.
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Similar plot as above but showing different channels separately
and in the tan β–mH+ plane
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The Tevatron could see a 3 σ hint with

5 fb−1 in a sizeable area of parameter

space

If arg(Mg̃)= 0 instead, stronger suppres-

sion of BR(H1,2) → bb̄ and both upper

channels less competitive

gluon fusion Higgs production with

subsequent decay into taus still crucial

channel at first years of LHC!
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In some regions of parameter space → strong H1 → τ+τ− suppression
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However, depending on the charged

Higgs mass and tan β values → bb̄ be-

comes suppressed with respect to τ+τ−

• Complementarity of Tevatron and low

luminosity LHC could be crucial for early

discovery in this type of scenarios.
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In MSSM with CP violation: mass splitting among neutral Higgs bosons can be

sizeable and they can share their couplings to W/Z’s
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=⇒ 3 signatures with very low significance

=⇒ they can be very close in mass and

“one signal” can be the background to

the other.

Selected Topics in Higgs and Supersymmetry
Marcela Carena, Fermilab



? MSSM SM-like Higgs studies show that

Tevatron W/ZHi(→ bb̄) and LHC WWHi(→ τ+τ−)

=⇒ direct test of Higgs mechanism,

can be affected very differently by radiative corrections.

=⇒ nice complementarity

• tt̄Hi(→ bb̄) needs high luminosity option at LHC O(100 fb−1)

• h→ γγ channel may be difficult depending on SUSY parameter space

(especially in CPX scenarios)

• LHC discovery reach in the first years relies strongly on vector-boson fusion

Higgs production, with Hi → τ+τ−.

It will be useful to study this channel with detailed detector simulations

including specially challenging cases.
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Outlook

By the End of This Decade
Tevatron

• will have measured Mt, MW to unprecedented accuracy −→ indirect constraints on MHSM

• If Nature is kind, discovery of new particles.

• If Nature, the accelerator and the detectors are kind, and physicists very smart, we

may learn something about EWSB!

In the Next Decade

LHC: A sure window to new physics:

• Higgs • SUSY • New Dimensions • New Particles & Interactions

• If Higgs & SUSY are there, we will find out.

• If Nature is kind, we will know exactly which type of SUSY is there.

LC

• unique capabilities to do precision Physics

• open the window to Planck scale physics

• unique connection with Cosmology
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